NixOS? Umm, wat?

@NOIDD <RED@INFECT.ME>

Nix — Package Manager

Multi-platform:

* ANY Linux Distribution, (seriously - no more futzing with
dep/pkg/rpm/et al.

* Any Architecture (does X86 / ARM out the box)

* OSX

* ChromeQOS

Any QS. [some assembly required)

Feel free to port to S{OS_OF CHOICE}
*We guarantee that we will not touch your underlying OS.
*We bring all our own tools, all our own dependencies.

*We literally don’t care what OS we run under, period.

From BloatLinux to busybox, we don’t care.

NIx I1s Magic

Nix 1s Functional

A functional definition of Functional:

* The same inputs ALWAYS give you the same outputs with
no side effects (referential transparency)

Nix 1s Functional

A functional definition of Functional:

* The same inputs ALWAYS give you the same outputs with
no side effects (referential transparency)

* The output is immutable.

Referential Transparency

Inputs:
* Source Code & Patches & Version (inc expression version)
* Configurationsh)

* Any dependencies for your package
* ... and their code / patches / versions / dependencies.

* Time Travel for Deterministic Builds.

Referential Transparency

Outputs:
/nix/store/rj16lxwpsa9fn88lb45ds7yrw2jrc5rb-mtx-1.3.12/

./share ./sbin
./share/man ./bin
./share/man/manl ./bin/tapeinfo
./share/man/man1/loaderinfo.1.gz ./bin/scsieject
./share/man/man1/tapeinfo.l.gz ./bin/scsitape
./share/man/man1/mtx.1.gz ./bin/loaderinfo
./share/man/man1/scsitape.l.gz ./bin/mtx

./share/man/man1/scsieject.1.gz

Example Nix Package - mtx

{ stdenv, fetchurl }:

Example Nix Package - mtx

stdenv.mkDerivation rec {
name = "mtx-1.3.12";
src = fetchurl {
url = "mirror://gentoo/distfiles/S{name}.tar.gz";

sha256 =
"0261c5e90b98b6138cd23dadecbc7bc6e2830235145ed2740290e1f35672d843";

5

Example Nix Package - mtx

meta = {
description = "Media Changer Tools";
longDescription = "The mtx command controls blah blah blah...”;
homepage = ;
license = stdenv.lib.licenses.gpl2;
maintainers = [stdenv.lib.maintainers.redvers |;

platforms = stdenv.lib.platforms.linux;

https://sourceforge.net/projects/mtx/

#include <ld.so> J /wut?

Fscking Libraries how to they (hormally) work?

#include <ld.so> J /wut?

Fscking Libraries how to they (hormally) work?

How does Nix bypass this?

#include <ld.so> J /wut?

Fscking Libraries how to they (hormally) work?
How does Nix bypass this?

What does it look like?

That's Pure!

... if only there was a OS that was built around
this ...

Nix(S

Adds the concept of Declarative Configuration.

Imperative vs Declarative

Imperative, describes HOW to build the system.
Declarative describes what it is you want.

Hello NixOS

{config, pkgs, ...}:
{
imports = |
./hardware-configuration.nix
I;

networking.hostname = “demo”;

... etc

evil.red - a guided tour

mc.evil.red - a guided tour

gmKk_packaging

